Male Scientist



Fontana L, Kennedy BK, Longo VD, Seals D, Melov S. Medical research: treat ageing. Nature. 2014; 511:405–07. 10.1038/511405a [PubMed] [CrossRef] [Google Scholar]
2. Steel N, Ford JA, Newton JN, Davis AC, Vos T, Naghavi M, Glenn S, Hughes A, Dalton AM, Stockton D, Humphreys C, Dallat M, Schmidt J, et al. Changes in health in the countries of the UK and 150 English Local Authority areas 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018; 392:1647–61. 10.1016/S0140-6736(18)32207-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. Check Hayden E, and E CH. Anti-ageing pill pushed as bona fide drug. Nature. 2015; 522:265–66. 10.1038/522265a [PubMed] [CrossRef] [Google Scholar]
4. Younis JS. Ovarian aging and implications for fertility female health. Minerva Endocrinol. 2012; 37:41–57. [PubMed] [Google Scholar]
5. Laisk T, Tšuiko O, Jatsenko T, Hõrak P, Otala M, Lahdenperä M, Lummaa V, Tuuri T, Salumets A, Tapanainen JS. Demographic and evolutionary trends in ovarian function and aging. Hum Reprod Update. 2018. 10.1093/humupd/dmy031 [PubMed] [CrossRef] [Google Scholar]
6. Lerner-Geva L, Rabinovici J, Lunenfeld B. Ovarian stimulation: is there a long-term risk for ovarian, breast and endometrial cancer? Womens Health (Lond). 2010; 6:831–39. 10.2217/WHE.10.67 [PubMed] [CrossRef] [Google Scholar]
7. Stevenson JC. A woman’s journey through the reproductive, transitional and postmenopausal periods of life: impact on cardiovascular and musculo-skeletal risk and the role of estrogen replacement. Maturitas. 2011; 70:197–205. 10.1016/j.maturitas.2011.05.017 [PubMed] [CrossRef] [Google Scholar]
8. Onat A, Karadeniz Y, Tusun E, Yüksel H, Kaya A. Advances in understanding gender difference in cardiometabolic disease risk. Expert Rev Cardiovasc Ther. 2016; 14:513–23. 10.1586/14779072.2016.1150782 [PubMed] [CrossRef] [Google Scholar]
9. Dorobantu M, Onciul S, Tautu OF, Cenko E. Hypertension and Ischemic Heart Disease in Women. Curr Pharm Des. 2016; 22:3885–92. 10.2174/1381612822666160414142426 [PubMed] [CrossRef] [Google Scholar]
10. Brar V, Gill S, Cardillo C, Tesauro M, Panza JA, Campia U. Sex-specific effects of cardiovascular risk factors on endothelium-dependent dilation and endothelin activity in middle-aged women and men. PLoS One. 2015; 10:e0121810. 10.1371/journal.pone.0121810 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11. Wise PM, Krajnak KM, Kashon ML. Menopause: the aging of multiple pacemakers. Science. 1996; 273:67–70. 10.1126/science.273.5271.67 [PubMed] [CrossRef] [Google Scholar]
12. Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev. 2016; 31:9–35. 10.1016/j.arr.2016.08.004 [PubMed] [CrossRef] [Google Scholar]
13. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956; 11:298–300. 10.1093/geronj/11.3.298 [PubMed] [CrossRef] [Google Scholar]
14. Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003; 5:557–61. 10.1089/152308603770310202 [PubMed] [CrossRef] [Google Scholar]
15. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012; 2012:329635. 10.1155/2012/329635 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Brink TC, Demetrius L, Lehrach H, Adjaye J. Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging. Biogerontology. 2009; 10:549–64. 10.1007/s10522-008-9197-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012; 2012:646354. 10.1155/2012/646354 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002; 32:1102–15. 10.1016/S0891-5849(02)00826-2 [PubMed] [CrossRef] [Google Scholar]
19. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003; 305:776–83. 10.1016/S0006-291X(03)00814-3 [PubMed] [CrossRef] [Google Scholar]
20. Halliwell B. Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radic Biol Med. 2002; 32:968–74. 10.1016/S0891-5849(02)00808-0 [PubMed] [CrossRef] [Google Scholar]
21. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005; 1703:93–109. 10.1016/j.bbapap.2004.08.007 [PubMed] [CrossRef] [Google Scholar]
22. Hammadeh ME, Al Hasani S, Rosenbaum P, Schmidt W, Fischer Hammadeh C. Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch Gynecol Obstet. 2008; 277:515–26. 10.1007/s00404-007-0507-1 [PubMed] [CrossRef] [Google Scholar]
23. Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN, Chaudhury K. Reactive oxygen species level in follicular fluid--embryo quality marker in IVF? Hum Reprod. 2006; 21:2403–07. 10.1093/humrep/del156 [PubMed] [CrossRef] [Google Scholar]
24. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003; 18:2270–74. 10.1093/humrep/deg450 [PubMed] [CrossRef] [Google Scholar]
25. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011; 84:775–82. 10.1095/biolreprod.110.088583 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility - a clinician’s perspective. Reprod Biomed Online. 2005; 11:641–50. 10.1016/S1472-6483(10)61174-1 [PubMed] [CrossRef] [Google Scholar]
27. Kavutcu M, Canbolat O, Oztürk S, Olcay E, Ulutepe S, Ekinci C, Gökhun IH, Durak I. Reduced enzymatic antioxidant defense mechanism in kidney tissues from gentamicin-treated guinea pigs: effects of vitamins E and C. Nephron. 1996; 72:269–74. 10.1159/000188853 [PubMed] [CrossRef] [Google Scholar]
28. Zaken V, Kohen R, Ornoy A. Vitamins C and E improve rat embryonic antioxidant defense mechanism in diabetic culture medium. Teratology. 2001; 64:33–44. 10.1002/tera.1045 [PubMed] [CrossRef] [Google Scholar]
29. Tarín JJ, Pérez-Albalá S, Cano A. Oral antioxidants counteract the negative

effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev. 2002; 61:385–97. 10.1002/mrd.10041 [PubMed] [CrossRef] [Google Scholar]
30. Huang J, Okuka M, McLean M, Keefe DL, Liu L. Telomere susceptibility to cigarette smoke-induced oxidative damage and chromosomal instability of mouse embryos in vitro. Free Radic Biol Med. 2010; 48:1663–76. 10.1016/j.freeradbiomed.2010.03.026 [PubMed] [CrossRef] [Google Scholar]
31. Navarro PA, Liu L, Ferriani RA, Keefe DL. Arsenite induces aberrations in meiosis that can be prevented by coadministration of N-acetylcysteine in mice. Fertil Steril. 2006. (Suppl 1); 85:1187–94. 10.1016/j.fertnstert.2005.08.060 [PubMed] [CrossRef] [Google Scholar]
32. Liu L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J Biol Chem. 2003; 278:31998–2004. 10.1074/jbc.M303553200 [PubMed] [CrossRef] [Google Scholar]
33. Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, Ji G, Liu N, Tang X, Baltz JM, Keefe DL, Liu L. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012; 27:1411–20. 10.1093/humrep/des019 [PubMed] [CrossRef] [Google Scholar]
34. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012; 39:283–99. 10.1111/j.1440-1681.2011.05648.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35. Melekoglu R, Ciftci O, Eraslan S, Cetin A, Basak N. Beneficial effects of curcumin and capsaicin on cyclophosphamide-induced premature ovarian failure in a rat model. J Ovarian Res. 2018; 11:33. 10.1186/s13048-018-0409-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36. Eser A, Hizli D, Namuslu M, Haltas H, Kosus N, Kosus A, Kafali H. Protective effect of curcumin on ovarian reserve in a rat ischemia model: an experimental study. Clin Exp Obstet Gynecol. 2017; 44:453–57. [PubMed] [Google Scholar]
37. Wang XN, Zhang CJ, Diao HL, Zhang Y. Protective Effects of Curcumin against Sodium Arsenite-induced Ovarian Oxidative Injury in a Mouse Model. Chin Med J (Engl). 2017; 130:1026–32. 10.4103/0366-6999.204927 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. Tiwari-Pandey R, Ram Sairam M. Modulation of ovarian structure and abdominal obesity in curcumin- and flutamide-treated aging FSH-R haploinsufficient mice. Reprod Sci. 2009; 16:539–50. 10.1177/1933719109332822 [PubMed] [CrossRef] [Google Scholar]
39. Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J Biol Chem. 2002; 277:10973–81. 10.1074/jbc.M112222200 [PubMed] [CrossRef] [Google Scholar]
40. Villalba JM, Navas P. Plasma membrane redox system in the control of stress-induced apoptosis. Antioxid Redox Signal. 2000; 2:213–30. 10.1089/ars.2000.2.2-213 [PubMed] [CrossRef] [Google Scholar]
41. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, Alexis J, Meriano J, Sung HK, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015; 14:887–95. 10.1111/acel.12368 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Özcan P, Fıçıcıoğlu C, Kizilkale O, Yesiladali M, Tok OE, Ozkan F, Esrefoglu M. Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? J Assist Reprod Genet. 2016; 33:1223–30. 10.1007/s10815-016-0751-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000; 148:187–97. 10.1016/S0300-483X(00)00210-9 [PubMed] [CrossRef] [Google Scholar]
44. Liu X, Lin X, Mi Y, Li J, Zhang C. Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens. Oxid Med Cell Longev. 2018; 2018:9390810. 10.1155/2018/9390810 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45. Wang J, Qian X, Gao Q, Lv C, Xu J, Jin H, Zhu H. Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. J Ovarian Res. 2018; 11:51. 10.1186/s13048-018-0421-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Luo LL, Huang J, Fu YC, Xu JJ, Qian YS. Effects of tea polyphenols on ovarian development in rats. J Endocrinol Invest. 2008; 31:1110–18. 10.1007/BF03345661 [PubMed] [CrossRef] [Google Scholar]
47. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. 1989; 5:155–71. [PubMed] [Google Scholar]
48. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev. 2005; 126:913–22. 10.1016/j.mad.2005.03.012 [PubMed] [CrossRef] [Google Scholar]
49. Selesniemi K, Lee HJ, Tilly JL. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 2008; 7:622–29. 10.1111/j.1474-9726.2008.00409.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50. Anisimov VN. Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp Gerontol. 2003; 38:1041–49. 10.1016/S0531-5565(03)00169-4 [PubMed] [CrossRef] [Google Scholar]
51. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, et al. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell. 2015; 14:497–510. 10.1111/acel.12338 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012; 122:253–70. 10.1042/CS20110386 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Palomba S, Falbo A, Zullo F, Orio F Jr. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev. 2009; 30:1–50. 10.1210/er.2008-0030 [PubMed] [CrossRef] [Google Scholar]
54. Oner G, Ozcelik B, Ozgun MT, Ozturk F. The effects of metformin and letrozole on endometrium and ovary in a rat model. Gynecol Endocrinol. 2011; 27:1084–86. 10.3109/09513590.2011.589928 [PubMed] [CrossRef] [Google Scholar]
55. Stadtmauer L, Vidali A, Lindheim SR, Sauer MV. Follicular fluid insulin-like growth factor-I and insulin-like growth factor-binding protein-1 and -3 vary as a function of ovarian reserve and ovarian stimulation. J Assist Reprod Genet. 1998; 15:587–93. 10.1023/A:1020377209952 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Malm SW, Hanke NT, Gill A, Carbajal L, Baker AF. The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and

ovarian cell lines. J Exp Clin Cancer Res. 2015; 34:31. 10.1186/s13046-015-0147-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Xi H, Kurtoglu M, Lampidis TJ. The wonders of 2-deoxy-D-glucose. IUBMB Life. 2014; 66:110–21. 10.1002/iub.1251 [PubMed] [CrossRef] [Google Scholar]
58. Barilovits SJ, Newsom KJ, Bickford JS, Beachy DE, Rhoton-Vlasak A, Nick HS. Characterization of a mechanism to inhibit ovarian follicle activation. Fertil Steril. 2014; 101:1450–57. 10.1016/j.fertnstert.2014.01.025 [PubMed] [CrossRef] [Google Scholar]
59. Ngô C, Brugier C, Plancher C, de la Rochefordière A, Alran S, Féron JG, Malhaire C, Scholl S, Sastre X, Rouzier R, Fourchotte V, and Gynecological Cancer Study Group of Institut Curie. Clinico-pathology and prognosis of endometrial cancer in patients previously treated for breast cancer, with or without tamoxifen: a comparative study in 363 patients. Eur J Surg Oncol. 2014; 40:1237–44. 10.1016/j.ejso.2014.05.007 [PubMed] [CrossRef] [Google Scholar]
60. Lee JY, Shin JY, Kim HS, Heo JI, Kho YJ, Kang HJ, Park SH, Lee JY. Effect of combined treatment with progesterone and tamoxifen on the growth and apoptosis of human ovarian cancer cells. Oncol Rep. 2012; 27:87–93. 10.3892/or.2011.1460 [PubMed] [CrossRef] [Google Scholar]
61. Stadtmauer L, Vidali A, Lindheim SR, Sauer MV. Follicular fluid insulin-like growth factor-I and insulin-like growth factor-binding protein-1 and -3 vary as a function of ovarian reserve and ovarian stimulation. J Assist Reprod Genet. 1998; 15:587–93. 10.1023/A:1020377209952 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Mahran YF, El-Demerdash E, Nada AS, Ali AA, Abdel-Naim AB. Insights into the protective mechanisms of tamoxifen in radiotherapy-induced ovarian follicular loss: impact on insulin-like growth factor 1. Endocrinology. 2013; 154:3888–99. 10.1210/en.2013-1214 [PubMed] [CrossRef] [Google Scholar]
63. Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci. 2014; 71:4325–46. 10.1007/s00018-014-1677-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
64. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS. Modulating mTOR in aging and health. Interdiscip Top Gerontol. 2015; 40:107–27. 10.1159/000364974 [PubMed] [CrossRef] [Google Scholar]
65. Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2015; 33:55–66. 10.1016/ [PubMed] [CrossRef] [Google Scholar]
66. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004; 131:3897–906. 10.1242/dev.01255 [PubMed] [CrossRef] [Google Scholar]
67. Tibor Vellai KT, Zhang Y, Attila L. Kovacs, László Orosz & Fritz Müller. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003; 426:620 10.1038/426620a [PubMed] [CrossRef] [Google Scholar]
68. Pankaj Kapahi BM. Tony Harper, Daniel Koslover, Viveca Sapin, and Seymour Benzer. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004; 14:885–90. 10.1016/j.cub.2004.03.059 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012; 335:1638–43. 10.1126/science.1215135 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE. Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell. 2013; 12:24–31. 10.1111/acel.12015 [PubMed] [CrossRef] [Google Scholar]
71. Zhang XM, Li L, Xu JJ, Wang N, Liu WJ, Lin XH, Fu YC, Luo LL. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene. 2013; 523:82–87. 10.1016/j.gene.2013.03.039 [PubMed] [CrossRef] [Google Scholar]
72. Tong Y, Li F, Lu Y, Cao Y, Gao J, Liu J. Rapamycin-sensitive mTORC1 signaling is involved in physiological primordial follicle activation in mouse ovary. Mol Reprod Dev. 2013; 80:1018–34. 10.1002/mrd.22267 [PubMed] [CrossRef] [Google Scholar]
73. Adhikari D, Risal S, Liu K, Shen Y. Pharmacological inhibition of mTORC1 prevents over-activation of the primordial follicle pool in response to elevated PI3K signaling. PLoS One. 2013; 8:e53810. 10.1371/journal.pone.0053810 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Arguelles AO, Meruvu S, Bowman JD, Choudhury M. Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today. 2016; 21:499–509. 10.1016/j.drudis.2015.12.001 [PubMed] [CrossRef] [Google Scholar]
75. Cacabelos R, Torrellas C. Epigenetics of Aging and Alzheimer’s Disease: Implications for Pharmacogenomics and Drug Response. Int J Mol Sci. 2015; 16:30483–543. 10.3390/ijms161226236 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. von Meyenn F, Reik W. Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell. 2015; 161:1248–51. 10.1016/j.cell.2015.05.039 [PubMed] [CrossRef] [Google Scholar]
77. Zhou XL, Xu JJ, Ni YH, Chen XC, Zhang HX, Zhang XM, Liu WJ, Luo LL, Fu YC. SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling. J Ovarian Res. 2014; 7:97. 10.1186/s13048-014-0097-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L. Resveratrol protects against age-associated infertility in mice. Hum Reprod. 2013; 28:707–17. 10.1093/humrep/des437 [PubMed] [CrossRef] [Google Scholar]
79. Chen ZG, Luo LL, Xu JJ, Zhuang XL, Kong XX, Fu YC. Effects of plant polyphenols on ovarian follicular reserve in aging rats. Biochem Cell Biol. 2010; 88:737–45. 10.1139/O10-012 [PubMed] [CrossRef] [Google Scholar]
80. Schneider A, Matkovich SJ, Victoria B, Spinel L, Bartke A, Golusinski P, Masternak MM. Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging. PLoS One. 2017; 12:e0169213. 10.1371/journal.pone.0169213 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Barragán M, Pons J, Ferrer-Vaquer A, Cornet-Bartolomé D, Schweitzer A, Hubbard J, Auer H, Rodolosse A, Vassena R. The transcriptome of human oocytes is related to age and ovarian reserve. Mol Hum Reprod. 2017; 23:535–48. 10.1093/molehr/gax033 [PubMed] [CrossRef] [Google Scholar]
82. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000; 290:1717–21. 10.1126/science.290.5497.1717 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015; 125:1–4. 10.1172/JCI78652 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
84. Findlay JK, Hutt KJ, Hickey M, Anderson RA. How Is the Number of Primordial Follicles in the Ovarian Reserve Established? Biol Reprod. 2015; 93:111. 10.1095/biolreprod.115.133652 [PubMed] [CrossRef] [Google Scholar]
85. Li L, Fu YC, Xu JJ, Lin XH, Chen XC, Zhang XM, Luo LL. Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling. Reprod Sci. 2015; 22:60–67. 10.1177/1933719114542016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Hurst PR, Mora JM, Fenwick MA. Caspase-3, TUNEL and ultrastructural studies of small follicles in adult human ovarian biopsies. Hum Reprod. 2006; 21:1974–80. 10.1093/humrep/del109 [PubMed] [CrossRef] [Google Scholar]
87. Yang YC, Zhang C, Wu J, Chan WY. Melatonin as potential targets for delaying ovarian aging. Curr Drug Targets. 2018; 19. 10.2174/1389450119666180828144843 [PubMed] [CrossRef] [Google Scholar]
88. Wang YF, Sun XF, Han ZL, Li L, Ge W, Zhao Y, De Felici M, Shen W, Cheng SF. Protective effects of melatonin against nicotine-induced disorder of mouse early folliculogenesis. Aging (Albany NY). 2018; 10:463–80. 10.18632/aging.101405 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
89. Tamura H, Kawamoto M, Sato S, Tamura I, Maekawa R, Taketani T, Aasada H, Takaki E, Nakai A, Reiter RJ, Sugino N. Long-term melatonin treatment delays ovarian aging. J Pineal Res. 2017; 62:e12381. 10.1111/jpi.12381 [PubMed] [CrossRef] [Google Scholar]
90. Sugiyama M, Kawahara-Miki R, Kawana H, Shirasuna K, Kuwayama T, Iwata H. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows. J Reprod Dev. 2015; 61:251–59. 10.1262/jrd.2015-001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P. Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA. 2012; 109:1743–48. 10.1073/pnas.1113306109 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Aydos SE, Elhan AH, Tükün A. Is telomere length one of the determinants of reproductive life span? Arch Gynecol Obstet. 2005; 272:113–16. 10.1007/s00404-004-0690-2 [PubMed] [CrossRef] [Google Scholar]
93. Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia. 2013; 45:289–304. 10.1111/and.12008 [PubMed] [CrossRef] [Google Scholar]
94. Xu X, Chen X, Zhang X, Liu Y, Wang Z, Wang P, Du Y, Qin Y, Chen ZJ. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum Reprod. 2017; 32:201–07. 10.1093/humrep/dew283 [PubMed] [CrossRef] [Google Scholar]
95. Yamada-Fukunaga T, Yamada M, Hamatani T, Chikazawa N, Ogawa S, Akutsu H, Miura T, Miyado K, Tarín JJ, Kuji N, Umezawa A, Yoshimura Y. Age-associated telomere shortening in mouse oocytes. Reprod Biol Endocrinol. 2013; 11:108. 10.1186/1477-7827-11-108 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
96. Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L. Resveratrol protects against age-associated infertility in mice. Hum Reprod. 2013; 28:707–17. 10.1093/humrep/des437 [PubMed] [CrossRef] [Google Scholar]
97. Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015; 61:77–84. 10.1016/j.neuchi.2015.03.002 [PubMed] [CrossRef] [Google Scholar]
98. Place NJ, Tuthill CR, Schoomer EE, Tramontin AD, Zucker I. Short day lengths delay reproductive aging. Biol Reprod. 2004; 71:987–92. 10.1095/biolreprod.104.029900 [PubMed] [CrossRef] [Google Scholar]
99. Finley CM, Gorman MR, Tuthill CR, Zucker I. Long-term reproductive effects of a single long day in the Siberian hamster (Phodopus sungorus). J Biol Rhythms. 1995; 10:33–41. 10.1177/074873049501000103 [PubMed] [CrossRef] [Google Scholar]
100. Meredith S, Jackson K, Dudenhoeffer G, Graham L, Epple J. Long-term supplementation with melatonin delays reproductive senescence in rats, without an effect on number of primordial follicles. Exp Gerontol. 2000; 35:343–52. 10.1016/S0531-5565(00)00092-9 [PubMed] [CrossRef] [Google Scholar]
101. Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, Mao T, Wu H, Zhang Y. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep. 2016; 6:35165. 10.1038/srep35165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
102. Fernández BE, Díaz E, Fernández C, Núñez P, Díaz B. Ovarian aging: melatonin regulation of the cytometric and endocrine evolutive pattern. Curr Aging Sci. 2013; 6:1–7. 10.2174/1874609811306010001 [PubMed] [CrossRef] [Google Scholar]
103. Bellipanni G, Bianchi P, Pierpaoli W, Bulian D, Ilyia E. Effects of melatonin in perimenopausal and menopausal women: a randomized and placebo controlled study. Exp Gerontol. 2001; 36:297–310. 10.1016/S0531-5565(00)00217-5 [PubMed] [CrossRef] [Google Scholar]
104. Tamura HK, Sato S, Tamura I, Maekawa R, Taketani T, Aasada H, Takaki E, Nakai A, Reiter RJ, Sugino N. Long term melatonin treatment delays ovarian aging. J Pineal Res. 2017; 62. 10.1111/jpi.12381 [PubMed] [CrossRef] [Google Scholar]
105. Gregoraszczuk EŁ, Ptak A, Wojciechowicz T, Nowak K. Action of IGF-I on expression of the long form of the leptin receptor (ObRb) in the prepubertal period and throughout the estrous cycle in the mature pig ovary. J Reprod Dev. 2007; 53:289–95. 10.1262/jrd.18071 [PubMed] [CrossRef] [Google Scholar]
106. Joo JK, Joo BS, Kim SC, Choi JR, Park SH, Lee KS. Role of leptin in improvement of oocyte quality by regulation of ovarian angiogenesis. Anim Reprod Sci. 2010; 119:329–34. 10.1016/j.anireprosci.2010.02.002 [PubMed] [CrossRef] [Google Scholar]
107. Kikuchi N, Andoh K, Abe Y, Yamada K, Mizunuma H, Ibuki Y. Inhibitory action of leptin on early follicular growth differs in immature and adult female mice. Biol Reprod. 2001; 65:66–71. 10.1095/biolreprod65.1.66 [PubMed] [CrossRef] [Google Scholar]
108. Panwar S, Herrid M, Kauter KG, McFarlane JR. Effect of passive immunization against leptin on ovarian follicular development in prepubertal mice. J Reprod Immunol. 2012; 96:19–24. 10.1016/j.jri.2012.07.004 [PubMed] [CrossRef] [Google Scholar]
109. Hamm ML, Bhat GK, Thompson WE, Mann DR. Folliculogenesis is impaired and granulosa cell apoptosis is increased in leptin-deficient mice. Biol Reprod. 2004; 71:66–72. 10.1095/biolreprod.104.027292 [PubMed] [CrossRef] [Google Scholar]
110. Sominsky L, Ziko I, Soch A, Smith JT, Spencer SJ. Neonatal overfeeding induces early decline of the ovarian reserve: implications for the role of leptin. Mol

Cell Endocrinol. 2016; 431:24–35. 10.1016/j.mce.2016.05.001 [PubMed] [CrossRef] [Google Scholar]
111. Fouany MR, Sharara FI. Is there a role for DHEA supplementation in women with diminished ovarian reserve? J Assist Reprod Genet. 2013; 30:1239–44. 10.1007/s10815-013-0018-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
112. Yilmaz N, Uygur D, Inal H, Gorkem U, Cicek N, Mollamahmutoglu L. Dehydroepiandrosterone supplementation improves predictive markers for diminished ovarian reserve: serum AMH, inhibin B and antral follicle count. Eur J Obstet Gynecol Reprod Biol. 2013; 169:257–60. 10.1016/j.ejogrb.2013.04.003 [PubMed] [CrossRef] [Google Scholar]
113. Singh N, Zangmo R, Kumar S, Roy KK, Sharma JB, Malhotra N, Vanamail P. A prospective study on role of dehydroepiandrosterone (DHEA) on improving the ovarian reserve markers in infertile patients with poor ovarian reserve. Gynecol Endocrinol. 2013; 29:989–92. 10.3109/09513590.2013.824957 [PubMed] [CrossRef] [Google Scholar]
114. Zhang J, Qiu X, Gui Y, Xu Y, Li D, Wang L. Dehydroepiandrosterone improves the ovarian reserve of women with diminished ovarian reserve and is a potential regulator of the immune response in the ovaries. Biosci Trends. 2015; 9:350–59. 10.5582/bst.2015.01154 [PubMed] [CrossRef] [Google Scholar]
115. Narkwichean A, Jayaprakasan K, Maalouf WE, Hernandez-Medrano JH, Pincott-Allen C, Campbell BK. Effects of dehydroepiandrosterone on in vivo ovine follicular development. Hum Reprod. 2014; 29:146–54. 10.1093/humrep/det408 [PubMed] [CrossRef] [Google Scholar]
116. Ikeda K, Baba T, Morishita M, Honnma H, Endo T, Kiya T, Saito T. Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone. J Ovarian Res. 2014; 7:46. 10.1186/1757-2215-7-46 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
117. Slot KA, Kastelijn J, Bachelot A, Kelly PA, Binart N, Teerds KJ. Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice. Reproduction. 2006; 131:525–32. 10.1530/rep.1.00946 [PubMed] [CrossRef] [Google Scholar]
118. Mahran YF, El-Demerdash E, Nada AS, El-Naga RN, Ali AA, Abdel-Naim AB. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis. PLoS One. 2015; 10:e0140055. 10.1371/journal.pone.0140055 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
119. Yeqing Guo SY. Treatment status and progress of premature ovarian insufficiency. Chinese journal of clinical physicians. 2015; 9(6):972-975.
120. Davies MC, Cartwright B. What is the best management strategy for a 20-year-old woman with premature ovarian failure? Clin Endocrinol (Oxf). 2012; 77:182–86. 10.1111/j.1365-2265.2012.04408.x [PubMed] [CrossRef] [Google Scholar]
121. Feng H. Clinical treatment of premature ovarian failure and pregnancy rate after ovulation induction. Shanxi medical journal. 2010; 39:51-53.
122. Langrish JP, Mills NL, Bath LE, Warner P, Webb DJ, Kelnar CJ, Critchley HO, Newby DE, Wallace WH. Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension. 2009; 53:805–11. 10.1161/HYPERTENSIONAHA.108.126516 [PubMed] [CrossRef] [Google Scholar]
123. Güleç Başer B, İslimye Taşkın M, Adalı E, Öztürk E, Hısmıoğulları AA, Yay A. Does progesterone have protective effects on ovarian ischemia-reperfusion injury? J Turk Ger Gynecol Assoc. 2018; 19:87–93. 10.4274/jtgga.2017.0047 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
124. Dragojević-Dikić S, Marisavljević D, Mitrović A, Dikić S, Jovanović T, Janković-Raznatović S. An immunological insight into premature ovarian failure (POF). Autoimmun Rev. 2010; 9:771–74. 10.1016/j.autrev.2010.06.008 [PubMed] [CrossRef] [Google Scholar]
125. Prendiville DJ, Enright WJ, Crowe MA, Vaughan L, Roche JF. Immunization of prepubertal beef heifers against gonadotropin-releasing hormone: immune, estrus, ovarian, and growth responses. J Anim Sci. 1995; 73:3030–37. 10.2527/1995.73103030x [PubMed] [CrossRef] [Google Scholar]
126. Xiaobo Shi NL, Can L, Shu Q, Zhu F. Glucocorticoid or androgen therapy in mice with autoimmune premature ovarian failure. J Cent South Univ. 2009; 34:576–81. [Google Scholar]
127. Xiafei Fu YH. Advances in diagnosis and treatment of premature ovarian failure. Journal of Guangdong medical. 2010; 31(8):933-934.
128. Ling Xie RL. Ye Lv, Hong Ma. Mechanisms research progress of traditional Chinese medicine on delaying ovarian aging and protecting ovarian function in peri-menopausal. journal of Jiangsu traditional. Chin Med. 2005; 26:59–61. [Google Scholar]
129. Guoli Zhang PF, Xian Ma. Progress in experimental research on the treatment of perimenopausal syndrome by traditional Chinese medicine. Journal of Changchun university of Chinese medicine. 2015; 31(2).
130. Nugent BM, Tobet SA, Lara HE, Lucion AB, Wilson ME, Recabarren SE, Paredes AH. Hormonal programming across the lifespan. Horm Metab Res. 2012; 44:577–86. 10.1055/s-0032-1312593 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
131. Lei Zhu JL, Xing Nannan, Han Dongwei, Kuang Haixue, and Pengling Ge American ginseng regulates gene expression to protect against premature ovarian failure in rats. BioMed Res Int. 2015; 2015:767124. 10.1155/2015/767124 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Huang C, Song K, Ma W, Ding J, Chen Z, Zhang M. Immunomodulatory mechanism of Bushen Huoxue Recipe alleviates cyclophosphamide-induced diminished ovarian reserve in mouse model. J Ethnopharmacol. 2017; 208:44–56. 10.1016/j.jep.2017.06.022 [PubMed] [CrossRef] [Google Scholar]
133. Song KK, Ma WW, Huang C, Ding JH, Cui DD, Tan XJ, Xiao J, Zhang MM. Effect and mechanism of Bushen Huoxue recipe on ovarian reserve in mice with premature ovarian failure. J Huazhong Univ Sci Technolog Med Sci. 2016; 36:571–75. 10.1007/s11596-016-1627-2 [PubMed] [CrossRef] [Google Scholar]
134. Xia T, Fu Y, Li S, Ma R, Zhao Z, Wang B, Chao C. Bu Shen Tiao Chong recipe restores diminished ovary reserve through the BDNF pathway. J Assist Reprod Genet. 2016; 33:795–805. 10.1007/s10815-016-0697-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
135. Liang L, Zhang XH, Ji B, Yao H, Ling XM, Guo ZJ, Deng HZ, Wu XR. Yifuning postpones ovarian aging through antioxidant mechanisms and suppression of the Rb/p53 signal transduction pathway. Mol Med Rep. 2016; 14:888–96. 10.3892/mmr.2016.5322 [PubMed] [CrossRef] [Google Scholar]
136. Yuanquan Ding SW, Nan C, Zhang L, Yuan J. Effect of Bu shen recipe on VEGF expression in ovaries of perimenopausal rats. J Tradit Chin Med. 2006; 24. [Google Scholar]
137. Shen M, Qi C, Kuang YP, Yang Y, Lyu QF, Long H, Yan ZG, Lu YY. Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. Eur J Med Res. 2017; 22:42. 10.1186/s40001-017-0285-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
138. Zhang J, Fang L, Shi L, Lai Z, Lu Z, Xiong J, Wu M, Luo A, Wang S. Protective effects and mechanisms investigation of Kuntai capsule on the ovarian function of a novel model with accelerated aging ovaries. J Ethnopharmacol. 2017; 195:173–81. 10.1016/j.jep.2016.11.014 [PubMed] [CrossRef] [Google Scholar]

Ávila, J., González-Fernández, R., Rotoli, D., Hernández, J., & Palumbo, A. (2016). Oxidative stress in granulosa-lutein cells from in vitro fertilization patients. Reproductive Sciences, 23(12), 1656–1661.

Bertoldo, M. J., Listijono, D. R., Ho, W. H. J., Riepsamen, A. H., Goss, D. M., Richani, D., Jin, X. L., Mahbub, S., Campbell, J. M., Habibalahi, A., Loh, W. G. N., Youngson, N. A., Maniam, J., Wong, A. S. A., Selesniemi, K., Bustamante, S., Li, C., Zhao, Y., Marinova, M. B., … Wu, L. E. (2020). NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell Reports, 30(6), 1670-1681.e7.

Briley, S. M., Jasti, S., McCracken, J. M., Hornick, J. E., Fegley, B., Pritchard, M. T., & Duncan, F. E. (2016). Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction (Cambridge, England), 152(3), 245.

Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., & Alimonti, A. (2019). Cellular senescence: aging, cancer, and injury. Physiological Reviews, 99(2), 1047–1078.

Cavalcante, M. B., Saccon, T. D., Nunes, A. D. C., Kirkland, J. L., Tchkonia, T., Schneider, A., & Masternak, M. M. (2020). Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging (Albany NY), 12(3), 2711.

Cimadomo, D., Fabozzi, G., Vaiarelli, A., Ubaldi, N., Ubaldi, F. M., & Rienzi, L. (2018). Impact of maternal age on oocyte and embryo competence. Frontiers in Endocrinology, 9, 327.

Eijkemans, M. J. C., Van Poppel, F., Habbema, D. F., Smith, K. R., Leridon, H., & te Velde, E. R. (2014). Too old to have children? Lessons from natural fertility populations. Human Reproduction, 29(6), 1304–1312.

Frederiksen, L. E., Ernst, A., Brix, N., Lauridsen, L. L. B., Roos, L., Ramlau-Hansen, C. H., & Ekelund, C. K. (2018). Risk of adverse pregnancy outcomes at advanced maternal age. Obstetrics & Gynecology, 131(3), 457–463.

Garcia, D. N., Saccon, T. D., Pradiee, J., Rincón

​1] Ata B, Seli E (2015). Strategies for Controlled Ovarian Stimulation in the Setting of Ovarian Aging. Semin Reprod Med, 33:436-448. [PubMed] [Google Scholar]
[2] Tachibana M, Kuno T, Yaegashi N (2018). Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod Med Biol, 17:421-433. [PMC free article] [PubMed] [Google Scholar]
[3] Kristensen SG, Pors SE, Andersen CY (2017). Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod, 32:725-732. [PubMed] [Google Scholar]
[4] Hansen KR, Craig LB, Zavy MT, Klein NA, Soules MR (2012). Ovarian primordial and nongrowing follicle counts according to the Stages of Reproductive Aging Workshop (STRAW) staging system. Menopause, 19:164-171. [PMC free article] [PubMed] [Google Scholar]
[5] Nelson SM, Telfer EE, Anderson RA (2013). The ageing ovary and uterus: new biological insights. Hum Reprod Update, 19:67-83. [PMC free article] [PubMed] [Google Scholar]
[6] Gleicher N, Weghofer A, Barad DH (2011). Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol, 9:23. [PMC free article] [PubMed] [Google Scholar]
[7] Chae-Kim JJ, Gavrilova-Jordan L (2018). Premature Ovarian Insufficiency: Procreative Management and Preventive Strategies. Biomedicines, 7. [PMC free article] [PubMed] [Google Scholar]
[8] Sills ES, Alper MM, Walsh AP (2009). Ovarian reserve screening in infertility: practical applications and theoretical directions for research. Eur J Obstet Gynecol Reprod Biol, 146:30-36. [PubMed] [Google Scholar]
[9] Babayev E, Seli E (2015). Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol, 27:175-181. [PMC free article] [PubMed] [Google Scholar]
[10] Zhang D, Keilty D, Zhang ZF, Chian RC (2017). Mitochondria in oocyte aging: current understanding. Facts Views Vis Obgyn, 9:29-38. [PMC free article] [PubMed] [Google Scholar]
[11] Satoh M, Kuroiwa T (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res, 196:137-140. [PubMed] [Google Scholar]
[12] Piko L, Matsumoto L (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol, 49:1-10. [PubMed] [Google Scholar]
[13] Jansen RP, de Boer K (1998). The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol, 145:81-88. [PubMed] [Google Scholar]
[14] Barritt JA, Kokot M, Cohen J, Steuerwald N, Brenner CA (2002). Quantification of human ooplasmic mitochondria. Reprod Biomed Online, 4:243-247. [PubMed] [Google Scholar]
[15] May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y, Reynier P (2005). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod, 20:593-597. [PubMed] [Google Scholar]
[16] Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod, 7:425-429. [PubMed] [Google Scholar]
[17] Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, et al. (2007). Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod, 22:1681-1686. [PubMed] [Google Scholar]
[18] (1999). O-165 quantification of mtDNA copy number in the human secondary oocyte. Hum Reprod, 14:2419. [PubMed] [Google Scholar]
[19] Ogino M, Tsubamoto H, Sakata K, Oohama N, Hayakawa H, Kojima T, et al. (2016). Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J Assist Reprod Genet, 33:367-371. [PMC free article] [PubMed] [Google Scholar]
[20] Desquiret-Dumas V, Clement A, Seegers V, Boucret L, Ferre-L'Hotellier V,

Bouet PE, et al. (2017). The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod, 32:607-614. [PubMed] [Google Scholar]
[21] Tsui KH, Wang PH, Lin LT, Li CJ (2017). DHEA protects mitochondria against dual modes of apoptosis and necroptosis in human granulosa HO23 cells. Reproduction, 154:101-110. [PubMed] [Google Scholar]
[22] Faddy MJ (2000). Follicle dynamics during ovarian ageing. Mol Cell Endocrinol, 163:43-48. [PubMed] [Google Scholar]
[23] Eichenlaub-Ritter U, Vogt E, Yin H, Gosden R (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online, 8:45-58. [PubMed] [Google Scholar]
[24] Lin PH, Lin LT, Li CJ, Kao PG, Tsai HW, Chen SN, et al. (2020). Combining Bioinformatics and Experiments to Identify CREB1 as a Key Regulator in Senescent Granulosa Cells. Diagnostics (Basel), 10. [PMC free article] [PubMed] [Google Scholar]
[25] Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod, 16:909-917. [PubMed] [Google Scholar]
[26] Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell, 14:887-895. [PMC free article] [PubMed] [Google Scholar]
[27] Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, et al. (2016). Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas, 93:121-130. [PMC free article] [PubMed] [Google Scholar]
[28] Kasapoglu I, Seli E (2020). Mitochondrial Dysfunction and Ovarian Aging. Endocrinology, 161. [PubMed] [Google Scholar]
[29] Wang T, Zhang M, Jiang Z, Seli E (2017). Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol, 77. [PubMed] [Google Scholar]
[30] Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, Sanchez-Cabo F, Torroja C, Acin-Perez R, et al. (2016). Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 535:561-565. [PubMed] [Google Scholar]
[31] Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott R, et al. (2019). Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging (Albany NY), 11:3919-3938. [PMC free article] [PubMed] [Google Scholar]
[32] Udagawa O, Ishihara T, Maeda M, Matsunaga Y, Tsukamoto S, Kawano N, et al. (2014). Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr Biol, 24:2451-2458. [PubMed] [Google Scholar]
[33] Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V, et al. (2004). Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest, 113:231-242. [PMC free article] [PubMed] [Google Scholar]
[34] Gispert S, Parganlija D, Klinkenberg M, Drose S, Wittig I, Mittelbronn M, et al. (2013). Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet, 22:4871-4887. [PMC free article] [PubMed] [Google Scholar]
[35] Maltecca F, Aghaie A, Schroeder DG, Cassina L, Taylor BA, Phillips SJ, et al. (2008). The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci, 28:2827-2836. [PMC free article] [PubMed] [Google Scholar]
[36] Clark H, Knapik LO, Zhang Z, Wu X, Naik MT, Oulhen N, et al. (2019). Dysfunctional MDR-1 disrupts mitochondrial homeostasis in the oocyte and ovary. Sci Rep, 9:9616. [PMC free article] [PubMed] [Google Scholar]
[37] Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, et al. (2015). Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet, 11:e1005241. [PMC free article] [PubMed] [Google Scholar]
[38] Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. (2015). Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril, 104:534-541 e531. [PubMed] [Google Scholar]
[39] Shang W, Zhang Y, Shu M, Wang W, Ren L, Chen F, et al. (2018). Comprehensive chromosomal and mitochondrial copy number profiling in human IVF embryos. Reprod Biomed Online, 36:67-74. [PubMed] [Google Scholar]
[40] Lledo B, Ortiz JA, Morales R, Garcia-Hernandez E, Ten J, Bernabeu A, et al. (2018). Comprehensive mitochondrial DNA analysis and IVF outcome. Hum Reprod Open, 2018:hoy023. [PMC free article] [PubMed] [Google Scholar]
[41] Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, Munne S, et al. (2017). Mitochondrial DNA quantification as a tool for embryo viability assessment: retrospective analysis of data from single euploid blastocyst transfers. Hum Reprod, 32:1282-1292. [PubMed] [Google Scholar]
[42] Victor AR, Brake AJ, Tyndall JC, Griffin DK, Zouves CG, Barnes FL, et al. (2017). Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril, 107:34-42 e33. [PubMed] [Google Scholar]
[43] Sanchez T, Wang T, Pedro MV, Zhang M, Esencan E, Sakkas D, et al. (2018). Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes. Fertil Steril, 110:1387-1397. [PMC free article] [PubMed] [Google Scholar]
[44] Solovjeva L, Firsanov D, Vasilishina A, Chagin V, Pleskach N, Kropotov A, et al. (2015). DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts. BMC Mol Biol, 16:18. [PMC free article] [PubMed] [Google Scholar]
[45] Hassold T, Hunt P (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet, 2:280-291. [PubMed] [Google Scholar]
[46] Shomper M, Lappa C, FitzHarris G (2014). Kinetochore microtubule establishment is defective in oocytes from aged mice. Cell Cycle, 13:1171-1179. [PMC free article] [PubMed] [Google Scholar]
[47] Yun Y, Holt JE, Lane SI, McLaughlin EA, Merriman JA, Jones KT (2014). Reduced ability to recover from spindle disruption and loss of kinetochore spindle assembly checkpoint proteins in oocytes from aged mice. Cell Cycle, 13:1938-1947. [PMC free article] [PubMed] [Google Scholar]
[48] Polanski Z (2013). Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes. Reprod Fertil Dev, 25:472-483. [PubMed] [Google Scholar]
[49] Cheng JM, Li J, Tang JX, Chen SR, Deng SL, Jin C, et al. (2016). Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice. Cell Cycle, 15:2454-2463. [PMC free article] [PubMed] [Google Scholar]
[50] Keefe DL (2016). Telomeres, Reproductive Aging, and Genomic Instability During Early Development. Reprod Sci, 23:1612-1615. [PubMed] [Google Scholar]
[51] Wang H, Jo YJ, Oh JS, Kim NH (2017). Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity. Oncotarget, 8:38631-38641. [PMC free article] [PubMed] [Google Scholar]
[52] Tatone C, Amicarelli F (2013). The aging ovary--the poor granulosa cells. Fertil Steril, 99:12-17. [PubMed] [Google Scholar]
[53] Iwata H (2017). Age-associated changes in granulosa cells and follicular fluid in cows. J Reprod Dev, 63:339-345. [PMC free article] [PubMed] [Google Scholar]
[54] Karakaya C, Guzeloglu-Kayisli O, Uyar A, Kallen AN, Babayev E, Bozkurt N, et al. (2015). Poor ovarian response in women undergoing in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril, 103:1469- 1476, e1461-1463. [PMC free article] [PubMed] [Google Scholar]
[55] Grondahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R (2010). Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod, 25:957-968. [PubMed] [Google Scholar]
[56] Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL (2017). Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell, 16:1381-1393. [PMC free article] [PubMed] [Google Scholar]
[57] Lin LT, Cheng JT, Wang PH, Li CJ, Tsui KH (2017). Dehydroepiandrosterone as a potential agent to slow down ovarian aging. J Obstet Gynaecol Res, 43:1855-1862. [PubMed] [Google Scholar]
[58] Govindaraj V, Krishnagiri H, Chakraborty P, Vasudevan M, Rao AJ (2017). Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med, 63:37-48. [PubMed] [Google Scholar]
[59] Dorji Ohkubo Y, Miyoshi K, Yoshida M (2012). Gene expression profile differences in embryos derived from prepubertal and adult Japanese Black cattle during in vitro development. Reprod Fertil Dev, 24:370-381. [PubMed] [Google Scholar]
[60] Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, et al. (2013). Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Mol Reprod Dev, 80:508-521. [PubMed] [Google Scholar]
[61] Oktay K, Turan V, Titus S, Stobezki R, Liu L (2015). BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging. Biol Reprod, 93:67. [PMC free article] [PubMed] [Google Scholar]
[62] Lin W, Titus S, Moy F, Ginsburg ES, Oktay K (2017). Ovarian Aging in Women With BRCA Germline Mutations. J Clin Endocrinol Metab, 102:3839-3847. [PMC free article] [PubMed] [Google Scholar]
[63] Mukherjee S, Diaz Valencia JD, Stewman S, Metz J, Monnier S, Rath U, et al. (2012). Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle, 11:2359-2366. [PMC free article] [PubMed] [Google Scholar]
[64] Zielinska AP, Bellou E, Sharma N, Frombach AS, Seres KB, Gruhn JR, et al. (2019). Meiotic Kinetochores Fragment into Multiple Lobes upon Cohesin Loss in Aging Eggs. Curr Biol, 29:3749-3765 e3747. [PMC free article] [PubMed] [Google Scholar]
[65] Nakagawa S, FitzHarris G (2017). Intrinsically Defective Microtubule Dynamics Contribute to Age-Related Chromosome Segregation Errors in Mouse Oocyte Meiosis-I. Curr Biol, 27:1040-1047. [PubMed] [Google Scholar]
[66] Tyc KM, El Yakoubi W, Bag A, Landis J, Zhan Y, Treff NR, et al. (2020). Exome sequencing links CEP120 mutation to maternally derived aneuploid conception risk. Hum Reprod, 35:2134-2148. [PMC free article] [PubMed] [Google Scholar]
[67] Webster A, Schuh M (2017). Mechanisms of Aneuploidy in Human Eggs. Trends Cell Biol, 27:55-68. [PubMed] [Google Scholar]
[68] Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, et al. (2014). The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod, 91:90. [PubMed] [Google Scholar]
[69] Da Silva-Buttkus P, Jayasooriya GS, Mora JM, Mobberley M, Ryder TA, Baithun M, et al. (2008). Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J Cell Sci, 121:3890-3900. [PubMed] [Google Scholar]
[70] El-Hayek S, Yang Q, Abbassi L, FitzHarris G, Clarke HJ (2018). Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication. Curr Biol, 28:1124-1131 e1123. [PMC free article] [PubMed] [Google Scholar]
[71] Molinari E, Bar H, Pyle AM, Patrizio P (2016). Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence. Mol Hum Reprod, 22:866-876. [PMC free article] [PubMed] [Google Scholar]
[72] Zhang D, Zhang X, Zeng M, Yuan J, Liu M, Yin Y, et al. (2015). Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet, 32:1069-1078. [PMC free article] [PubMed] [Google Scholar]
[73] Poulsen P, Esteller M, Vaag A, Fraga MF (2007). The epigenetic basis of twin discordance in age-related diseases. Pediatr Res, 61:38R-42R. [PubMed] [Google Scholar]
[74] Pearce EL, Pearce EJ (2013). Metabolic pathways in immune cell activation and quiescence. Immunity, 38:633-643. [PMC free article] [PubMed] [Google Scholar]
[75] Yue MX, Fu XW, Zhou GB, Hou YP, Du M, Wang L, et al. (2012). Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J Assist Reprod Genet, 29:643-650. [PMC free article] [PubMed] [Google Scholar]
[76] Yu B, Dong X, Gravina S, Kartal O, Schimmel T, Cohen J, et al. (2017). Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation. Stem Cell Reports, 9:397-407. [PMC free article] [PubMed] [Google Scholar]
[77] Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al. (2012). Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol, 19:1155-1160. [PMC free article] [PubMed] [Google Scholar]
[78] Berger SL (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev, 12:142-148. [PubMed] [Google Scholar]
[79] Masumoto H, Hawke D, Kobayashi R, Verreault A (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature, 436:294-298. [PubMed] [Google Scholar]
[80] Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419:407-411. [PubMed] [Google Scholar]
[81] De La Fuente R (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol, 292:1-12. [PubMed] [Google Scholar]
[82] Manosalva I, Gonzalez A (2010). Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology, 74:1539-1547. [PubMed] [Google Scholar]
[83] Eissenberg JC, Shilatifard A (2010). Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol, 339:240-249. [PMC free article] [PubMed] [Google Scholar]
[84] Jasper H, Jones DL (2010). Metabolic regulation of stem cell behavior and implications for aging. Cell Metab, 12:561-565. [PMC free article] [PubMed] [Google Scholar]
[85] van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EA, Galjaard RJ, et al. (2011). Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum Reprod, 26:1181-1190. [PubMed] [Google Scholar]
[86] Yadav AK, Yadav PK, Chaudhary GR, Tiwari M, Gupta A, Sharma A, et al. (2019). Autophagy in hypoxic ovary. Cell Mol Life Sci, 76:3311-3322. [PubMed] [Google Scholar]
[87] Iwakawa HO, Tomari Y (2015). The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol, 25:651-665. [PubMed] [Google Scholar]
[88] Assou S, Al-edani T, Haouzi D, Philippe N, Lecellier CH, Piquemal D, et al. (2013). MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Hum Reprod, 28:3038-3049. [PubMed] [Google Scholar]
[89] Battaglia R, Vento ME, Ragusa M, Barbagallo D, La Ferlita A, Di Emidio G, et al. (2016). MicroRNAs Are Stored in Human MII Oocyte and Their Expression Profile Changes in Reproductive Aging. Biol Reprod, 95:131. [PubMed] [Google Scholar]
[90] Barragan M, Pons J, Ferrer-Vaquer A, Cornet-Bartolome D, Schweitzer A, Hubbard J, et al. (2017). The transcriptome of human oocytes is related to age and ovarian reserve. Mol Hum Reprod, 23:535-548. [PubMed] [Google Scholar]
[91] Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. (2014). Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb), 17:90-98. [PubMed] [Google Scholar]
[92] Chen B, Xu P, Wang J, Zhang C (2019). The role of MiRNA in polycystic ovary syndrome (PCOS). Gene, 706:91-96. [PubMed] [Google Scholar]
[93] Dang Y, Wang X, Hao Y, Zhang X, Zhao S, Ma J, et al. (2018). MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis, 9:106. [PMC free article] [PubMed] [Google Scholar]
[94] Mara JN, Zhou LT, Larmore M, Johnson B, Ayiku R, Amargant F, et al. (2020). Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY), 12:9686-9713. [PMC free article] [PubMed] [Google Scholar]
[95] Amargant F, Manuel SL, Tu Q, Parkes WS, Rivas F, Zhou LT, et al. (2020). Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell:e13259. [PMC free article] [PubMed] [Google Scholar]
[96] Dipali SS, Ferreira CR, Zhou LT, Pritchard MT, Duncan FE (2019). Histologic analysis and lipid profiling reveal reproductive age-associated changes in peri-ovarian adipose tissue. Reprod Biol Endocrinol, 17:46. [PMC free article] [PubMed] [Google Scholar]
[97] Duncan FE, Gerton JL (2018). Mammalian oogenesis and female reproductive aging. Aging (Albany NY), 10:162-163. [PMC free article] [PubMed] [Google Scholar]
[98] Briley SM, Jasti S, McCracken JM, Hornick JE, Fegley B, Pritchard MT, et al. (2016). Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction, 152:245-260. [PMC free article] [PubMed] [Google Scholar]
[99] Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L (2020). Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction, 159:325-337. [PMC free article] [PubMed] [Google Scholar]
[100] Cordeiro FB, Montani DA, Pilau EJ, Gozzo FC, Fraietta R, Turco EGL (2018). Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J Assist Reprod Genet, 35:1385-1393. [PMC free article] [PubMed] [Google Scholar]
[101] Yang X, Wu LL, Chura LR, Liang X, Lane M, Norman RJ, et al. (2012). Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril, 97:1438-1443. [PubMed] [Google Scholar]
[102] Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol, 7:40. [PMC free article] [PubMed] [Google Scholar]
[103] Carbone MC, Tatone C, Delle Monache S, Marci R, Caserta D, Colonna R, et al. (2003). Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Mol Hum Reprod, 9:639-643. [PubMed] [Google Scholar]
[104] Takeo S, Kimura K, Shirasuna K, Kuwayama T, Iwata H (2017). Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod Fertil Dev, 29:759-767. [PubMed] [Google Scholar]
[105] Pertynska-Marczewska M, Diamanti-Kandarakis E (2017). Aging ovary and the role for advanced glycation end products. Menopause, 24:345-351. [PubMed] [Google Scholar]
[106] Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, et al. (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab, 8:347-358. [PubMed] [Google Scholar]
[107] Tilly JL, Sinclair DA (2013). Germline energetics, aging, and female infertility. Cell Metab, 17:838-850. [PMC free article] [PubMed] [Google Scholar]
[108] Jiang GJ, Wang K, Miao DQ, Guo L, Hou Y, Schatten H, et al. (2011). Protein profile changes during porcine oocyte aging and effects of caffeine on protein expression patterns. PLoS One, 6:e28996. [PMC free article] [PubMed] [Google Scholar]
[109] Stricker SA, Beckstrom B, Mendoza C, Stanislawski E, Wodajo T (2016). Oocyte aging in a marine protostome worm: The roles of maturation-promoting factor and extracellular signal regulated kinase form of mitogen-activated protein kinase. Dev Growth Differ, 58:250-259. [PubMed] [Google Scholar]
[110] Stricker SA, Ravichandran N (2017). The potential roles of c-Jun N-terminal kinase (JNK) during the maturation and aging of oocytes produced by a marine protostome worm. Zygote, 25:686-696. [PubMed] [Google Scholar]
[111] Kalmbach KH, Fontes Antunes DM, Dracxler RC, Knier TW, Seth-Smith ML, Wang F, et al. (2013). Telomeres and human reproduction. Fertil Steril, 99:23-29. [PMC free article] [PubMed] [Google Scholar]
[112] Calado R, Young N (2012). Telomeres in disease. F1000 Med Rep, 4:8. [PMC free article] [PubMed] [Google Scholar]
[113] Turner S, Hartshorne GM (2013). Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol Hum Reprod, 19:510-518. [PubMed] [Google Scholar]
[114] Kosebent EG, Uysal F, Ozturk S (2018). Telomere length and telomerase activity during folliculogenesis in mammals. J Reprod Dev, 64:477-484. [PMC free article] [PubMed] [Google Scholar]
[115] Nassrally MS, Lau A, Wise K, John N, Kotecha S, Lee KL, et al. (2019). Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev, 179:11-22. [PubMed] [Google Scholar]
[116] Xu X, Chen X, Zhang X, Liu Y, Wang Z, Wang P, et al. (2017). Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum Reprod, 32:201-207. [PubMed] [Google Scholar]
[117] Liu MJ, Sun AG, Zhao SG, Liu H, Ma SY, Li M, et al. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertil Steril, 109:900-907. [PubMed] [Google Scholar]
[118] Nehra D, Le HD, Fallon EM, Carlson SJ, Woods D, White YA, et al. (2012). Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell, 11:1046-1054. [PMC free article] [PubMed] [Google Scholar]
[119] Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, et al. (2016). Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep, 6:35165. [PMC free article] [PubMed] [Google Scholar]
[120] Tartagni M, Cicinelli MV, Baldini D, Tartagni MV, Alrasheed H, DeSalvia MA, et al. (2015). Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reprod Biol Endocrinol, 13:18. [PMC free article] [PubMed] [Google Scholar]
[121] Tsui KH, Lin LT, Chang R, Huang BS, Cheng JT, Wang PH (2015). Effects of dehydroepiandrosterone supplementation on women with poor ovarian response: A preliminary report and review. Taiwan J Obstet Gynecol, 54:131-136. [PubMed] [Google Scholar]
[122] Cohen J, Scott R, Alikani M, Schimmel T, Munne S, Levron J, et al. (1998). Ooplasmic transfer in mature human oocytes. Mol Hum Reprod, 4:269-280. [PubMed] [Google Scholar]
[123] Templeton A (2002). Ooplasmic transfer--proceed with care. N Engl J Med, 346:773-775. [PubMed] [Google Scholar]
[124] Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell, 151:333-343. [PMC free article] [PubMed] [Google Scholar]
[125] Woods DC, Tilly JL (2015). Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in Human Assisted Reproduction. Semin Reprod Med, 33:410-421. [PMC free article] [PubMed] [Google Scholar]
[126] Sheng X, Yang Y, Zhou J, Yan G, Liu M, Xu L, et al. (2019). Mitochondrial transfer from aged adipose-derived stem cells does not improve the quality of aged oocytes in C57BL/6 mice. Mol Reprod Dev, 86:516-529. [PubMed] [Google Scholar]
[127] Li J, Zhang Y, Zheng N, Li B, Yang J, Zhang C, et al. (2020). CREB activity is required for mTORC1 signaling-induced primordial follicle activation in mice. Histochem Cell Biol, 154:287-299. [PubMed] [Google Scholar]
[128] Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, et al. (2018). MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol, 233:226-237. [PubMed] [Google Scholar]
[129] May-Panloup P, Vignon X, Chretien MF, Heyman Y, Tamassia M, Malthiery Y, et al. (2005). Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol, 3:65. [PMC free article] [PubMed] [Google Scholar]
[130] Ghaffari Novin M, Noruzinia M, Allahveisi A, Saremi A, Fadaei Fathabadi F, Mastery Farahani R, et al. (2015). Comparison of mitochondrial-related transcriptional levels of TFAM, NRF1 and MT-CO1 genes in single human oocytes at various stages of the oocyte maturation. Iran Biomed J, 19:23-28. [PMC free article] [PubMed] [Google Scholar]
[131] Zhou Z, Wan Y, Zhang Y, Wang Z, Jia R, Fan Y, et al. (2012). Follicular development and expression of nuclear respiratory factor-1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha in ovaries of fetal and neonatal doelings. J Anim Sci, 90:3752-3761. [PubMed] [Google Scholar]
[132] Jang YJ, Kim JS, Yun PR, Seo YW, Lee TH, Park JI, et al. (2020). Involvement of peroxiredoxin 2 in cumulus expansion and oocyte maturation in mice. Reprod Fertil Dev, 32:783-791. [PubMed] [Google Scholar]
[133] Jang YJ, Park JI, Moon WJ, Dam PT, Cho MK, Chun SY (2015). Cumulus cell-expressed type I interferons induce cumulus expansion in mice. Biol Reprod, 92:20. [PubMed] [Google Scholar]
[134] Sugiura K, Su YQ, Eppig JJ (2009). Targeted suppression of Has2 mRNA in mouse cumulus cell-oocyte complexes by adenovirus-mediated short-hairpin RNA expression. Mol Reprod Dev, 76:537-547. [PMC free article] [PubMed] [Google Scholar]
[135] Ezzati M, Roshangar L, Soleimani Rad J, Karimian N (2018). Evaluating The Effect of Melatonin on HAS2, and PGR expression, as well as Cumulus Expansion, and Fertility Potential in Mice. Cell J, 20:108-112. [PMC free article] [PubMed] [Google Scholar]
[136] Wang P, Liu S, Zhu C, Duan Q, Jiang Y, Gao K, et al. (2020). MiR-29 regulates the function of goat granulosa cell by targeting PTX3 via the PI3K/AKT/mTOR and Erk1/2 signaling pathways. J Steroid Biochem Mol Biol, 202:105722. [PubMed] [Google Scholar]
[137] Wang Y, Liang N, Yao G, Tian H, Zhai Y, Yin Y, et al. (2014). Knockdown of TrkA in cumulus oocyte complexes (COCs) inhibits EGF-induced cumulus expansion by down-regulation of IL-6. Mol Cell Endocrinol, 382:804-813. [PubMed] [Google Scholar]
[138] Jiao Y, Li J, Zhu S, Ahmed JZ, Li M, Shi D, et al. (2020). PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology, 157:432-439. [PubMed] [Google Scholar]
[139] De Los Reyes M, Palomino J, Araujo A, Flores J, Ramirez G, Parraguez VH, et al. (2020). Cyclooxygenase 2 messenger RNA levels in canine follicular cells: interrelationship with GDF-9, BMP-15, and progesterone. Domest Anim Endocrinol, 74:106529. [PubMed] [Google Scholar]
[140] Su YQ, Wu X, O'Brien MJ, Pendola FL, Denegre JN, Matzuk MM, et al. (2004). Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol, 276:64-73. [PubMed] [Google Scholar]
[141] Caixeta ES, Sutton-McDowall ML, Gilchrist RB, Thompson JG, Price CA, Machado MF, et al. (2013). Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction, 146:27-35. [PubMed] [Google Scholar]
[142] Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ (2010). Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol, 24:1230-1239. [PMC free article] [PubMed] [Google Scholar]
[143] Hobeika E, Armouti M, Kala H, Fierro MA, Winston NJ, Scoccia B, et al. (2019). Oocyte-Secreted Factors Synergize With FSH to Promote Aromatase Expression in Primary Human Cumulus Cells. J Clin Endocrinol Metab, 104:1667-1676. [PMC free article] [PubMed] [Google Scholar]
[144] Varnosfaderani Sh R, Ostadhosseini S, Hajian M, Hosseini SM, Khashouei EA, Abbasi H, et al. (2013). Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology, 80:470-478. [PubMed] [Google Scholar]
[145] Kim JW, Park HJ, Chae SK, Ahn JH, Do GY, Choo YK, et al. (2016). Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs. J Reprod Dev, 62:249-255. [PMC free article] [PubMed] [Google Scholar]
[146] Park HJ, Chae SK, Kim JW, Yang SG, Jung JM, Kim MJ, et al. (2017). Ganglioside GM3 induces cumulus cell apoptosis through inhibition of epidermal growth factor receptor-mediated PI3K/AKT signaling pathways during in vitro maturation of pig oocytes. Mol Reprod Dev, 84:702-711. [PubMed] [Google Scholar]
[147] Kim JW, Park HJ, Yang SG, Kim MJ, Kim IS, Jegal HG, et al. (2020). Exogenous Ganglioside GT1b Enhances Porcine Oocyte Maturation, Including the Cumulus Cell Expansion and Activation of EGFR and ERK1/2 Signaling. Reprod Sci, 27:278-289. [PubMed] [Google Scholar]
[148] Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, et al. (2015). Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol, 230:71-81. [PubMed] [Google Scholar]
[149] Ma R, Liang W, Sun Q, Qiu X, Lin Y, Ge X, et al. (2018). Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging (Albany NY), 10:2991-3004. [PMC free article] [PubMed] [Google Scholar]
[150] Zhang Y, Wang HH, Wan X, Xu Y, Pan MH, Sun SC (2018). Inhibition of protein kinase D disrupts spindle formation and actin assembly during porcine oocyte maturation. Aging (Albany NY), 10:3736-3744. [PMC free article] [PubMed] [Google Scholar]
[151] Niu YJ, Zhou W, Nie ZW, Zhou D, Xu YN, Ock SA, et al. (2020). Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY), 12:1256-1271. [PMC free article] [PubMed] [Google Scholar]
[152] Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330:366-369. [PMC free article] [PubMed] [Google Scholar]
[153] Tsuji T, Kiyosu C, Akiyama K, Kunieda T (2012). CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev, 79:795-802. [PubMed] [Google Scholar]
[154] Bartolucci AF, Uliasz T, Peluso JJ (2020). MicroRNA-21 as a regulator of human cumulus cell viability and its potential influence on the developmental potential of the oocyte. Biol Reprod, 103:94-103. [PubMed] [Google Scholar]
[155] Pan B, Toms D, Shen W, Li J (2015). MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab, 308:E525-534. [PMC free article] [PubMed] [Google Scholar]
[156] Li X, Wang H, Sheng Y, Wang Z (2017). MicroRNA-224 delays oocyte maturation through targeting Ptx3 in cumulus cells. Mech Dev, 143:20-25. [PubMed] [Google Scholar]
[157] Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S (2018). The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Kruppel-homolog 1. Development, 145. [PubMed] [Google Scholar]
[158] Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, et al. (2017). MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res, 10:37. [PMC free article] [PubMed] [Google Scholar]
[159] Li Z, Jia J, Gou J, Zhao X, Yi T (2015). MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis. Fertil Steril, 103:834-834 e834. [PubMed] [Google Scholar]
[160] Zhang Z, Chen CZ, Xu MQ, Zhang LQ, Liu JB, Gao Y, et al. (2019). MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology, 123:45-53. [PubMed] [Google Scholar]
[161] Pan B, Toms D, Li J (2018). MicroRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells. Am J Physiol Cell Physiol, 314:C268-C277. [PubMed] [Google Scholar]
[162] Zhang J, Guan Y, Shen C, Zhang L, Wang X (2019). MicroRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells. Biomed Pharmacother, 118:109350. [PubMed] [Google Scholar]
[163] Grossman H, Har-Paz E, Gindi N, Levi M, Miller I, Nevo N, et al. (2017). Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments. Sci Rep, 7:2238. [PMC free article] [PubMed] [Google Scholar]

Mother and Baby